
 
University of Victoria 

Engineering & Computer Science Co-op 
Work Term Report 

Spring 2020 
 

 
Efficient Well-Scheduling & Automation 

 
 

Ovintiv Inc. 
Technical Services 

Calgary, Alberta, Canada 
 

Nolan Caissie 
V00878989 

WT 1 
Electrical Engineering 
nolancaissie@uvic.ca 

April 26, 2020 
 
 

In partial fulfillment of the academic requirements of this co-op term 
 

 
 
Supervisor's Approval: To be completed by Co-op Employer 
 
This report will be handled by UVic Co-op staff and will be read by one assigned report marker who may be a co-
op staff member within the Engineering and Computer Science Co-operative Education Program, or a UVic 
faculty member or teaching assistant. The report will be retained and available to the student or, subject to the 
student’s right to appeal a grade, held for one year after which it will be deleted. 
 
I approve the release of this report to the University of Victoria for evaluation purposes only. 
 
 
Signature:     Position: Mgr. EIC, CA Date:   26 Apr 2020 
  
  
Name (print): Manjit Singh E-Mail: __manjit.singh@ovintiv.com__________________________ 
  
 
For (Company Name)_____Ovintiv Inc.________________________________________________________ 
 

 



 
i 

Table of Contents 

LIST OF FIGURES ............................................................................................ II 

GLOSSARY ...................................................................................................... III 

ABSTRACT ..................................................................................................... VII 

1. INTRODUCTION ........................................................................................... 1 

1.1 THE MOXA ........................................................................................................ 3 
1.2 SCOPE .............................................................................................................. 5 

2. THINGSPRO .................................................................................................. 5 

2.1 THINGSPRO AND MODBUS ..................................................................................... 5 
2.2 THINGSPRO AND MQTT ....................................................................................... 7 

3. NODE-RED .................................................................................................... 9 

3.1 NODE-RED AND MQTT ...................................................................................... 10 
3.2 NODE-RED AND MODBUS ................................................................................... 13 

3.2.1 Read and Write Operations ....................................................................... 14 
3.2.2 Logical Operations ................................................................................... 14 
3.2.3 Emulated SCADA System .......................................................................... 14 
3.2.4 The “Master flow” .................................................................................... 15 

4. SUMMARY ANALYSIS ................................................................................. 15 

5. CONCLUSIONS ............................................................................................ 15 

6. RECOMMENDATIONS ................................................................................. 17 

7. REFERENCES .............................................................................................. 18 

 

 

 

 

 



 
ii 

List of Figures 

FIGURE 1.1: SCADA SYSTEM HMI [3] ............................................................................. 2 
FIGURE 1.2: DISTRIBUTED CONTROL SYSTEM (DCS) [4] ...................................................... 2 
FIGURE 1.3: SCADAPACK 334 RPAC [5] ......................................................................... 3 
FIGURE 1.4: MOXA UC-8100-ME-T SERIES [6] ................................................................. 4 
FIGURE 1.5: THINGSPRO NETWORK [7] ............................................................................ 4 
FIGURE 2.1: DEVICE READ TEST [9] ................................................................................ 6 
FIGURE 2.2: MODBUS SLAVE FUNCTION [9] ....................................................................... 6 
FIGURE 2.3: CREATING A TOKEN FOR MOXA DEVICE CONFIGURATION [10] ................................ 7 
FIGURE 2.4: VPN TUNNEL [11] ...................................................................................... 7 
FIGURE 2.5: POLLING INTERVAL [12] ............................................................................... 8 
FIGURE 2.6: GENERIC MQTT CLIENT [9] .......................................................................... 8 
FIGURE 2.7: SPARKPLUG MQTT SPECIFICATION [9] ............................................................. 9 
FIGURE 2.8: SPARKPLUG MQTT SPECIFICATION CONFIGURATION [9] ....................................... 9 
FIGURE 3.1: EXAMPLE FLOW [15] ................................................................................. 11 
FIGURE 3.2: NODE-RED PALETTE MANAGER [16] ............................................................. 11 
FIGURE 3.3: FUNCTION NODE [18] ............................................................................... 12 
FIGURE 3.4: EXEC NODE [19] ...................................................................................... 12 
FIGURE 3.5: MQTT INPUT NODE [20] ........................................................................... 12 
FIGURE 3.6: MQTT OUTPUT NODE [20] ........................................................................ 12 
FIGURE 3.7: MQTT BROKER NODE [21] ......................................................................... 12 
FIGURE 3.8: CONFIGURING THE BROKER NODE [21] .......................................................... 12 
FIGURE 3.9: MODBUS TCP NODE PACKAGE [22] ............................................................... 13 
 

 

 

 

 

 



 
iii 

Glossary  

API – An application programming interface, which in this instance, enables a user’s 
program to interface with the Moxa computer. 

C – A high-level procedural programming language. 

Coil – A single bit register that can hold a single binary number (0 or 1), used for 
discrete input and output signals in a controller. 

COMM port – COMM, is short for communications. A COMM port uses serial 
communications as opposed to a BUS which does not. 

Communication protocol – Can be thought of as a language of digital communication 
between devices. 

Data acquisition – The process of acquiring and storing digital information taken from 
field devices. 

DCS – A Distributed control system is an interconnected network of controllers and 
devices. 

Edge computing – The process of performing computations on the “edge” of a 
computer network. This can be thought of as computing between an interface of two 
networks, such as between the internet and a LAN. 

Field devices – For the purpose of this document, a field device is an instrument or 
controller used for automation in the oil and gas industry. 

GUI – A graphical user interface enables user-friendly graphical interaction with 
computer hardware. 

Headless computer – A computer that has no desktop environment, and thus, must be 
controlled through a command line. 

HMI – Similar to a GUI, it is a user interface. It enables a human to directly interact 
with a machine. 

IIoT – “Industrial internet of things”, is a loose term meant to describe a system 
connecting “things” in an industrial environment to the internet so that they can be 



 
iv 

controlled and monitored remotely. It is often used in conjunction with the MQTT 
communication protocol due to its low bandwidth requirements. 

LAN – A local area network, or LAN, is a network that computers or controllers use to 
communicate with each other but it does not reside on the internet. 

Modbus – Modbus is a serial communication protocol; it can be thought of as a 
“language” or set of rules for serial communications. 

Modbus TCP – Similar to the simple Modbus definition, Modbus TCP is a serial 
communication protocol that communicates over a computer network such as a LAN or 
internet connection, as opposed to a COMM port. It may also be called Modbus TCP/IP 
as it works in conjunction with the IP (internet protocol), and thus, devices are 
addressed by an IP. 

Moxa Computer – A headless computer that runs a Linux operating system. It can act 
as an interface or “edge computer” to perform computations between networks, as well 
as, be used as a means of distributing and acquiring data between network interfaces.  

MQTT – A lightweight communication protocol often used in IoT applications. Similarly 
to Modbus TCP, it communicates through a LAN or internet connection. 

MQTT broker – A server that creates a “cloud-like” architecture where clients can 
publish and subscribe to topics within the server. As an example, if a client somewhere 
in the world published a message to a topic in a specific broker, a client on the other 
side of the world could subscribe to that topic to receive the message. Neither client is 
actually connected or networked together, and thus, the MQTT broker provides a safe 
and private way to share data over the internet. 

Node-RED – An open-source software often used in IoT applications for visual, flow-
based programming. 

Peripherals – A device that allows a user to input or output data from a computer. A 
keyboard is an example of a peripheral device. 

Petroleum – For the purposes of this document, petroleum is a broad term used to 
describe oil and gas products. 



 
v 

PLC – A Programmable logic controller is a computer used in industrial applications for 
control and automation. It relies on “ladder logic”, which is essentially a programming 
language that replaced the physical relays historically used in very large numbers for 
automation. 

Python – A high-level object-oriented computer programming language with a wide 
range of uses. 

Register – A register is similar to a coil but can hold larger binary numbers, as opposed 
to just a single digit. Registers are used to hold values or instructions for quick 
processing. 

Router – A router essentially “routes” data between computer networks that would 
otherwise be incapable of communicating with each other. An example of this use is a 
router used in a home network that routes internet traffic to and from a home’s LAN. 

rPAC – A remote programmable automation controller, is a controller used in industrial 
settings for automation and control. It is similar in some aspects to a PLC, but in this 
instance has less available input and output. It is, however, a newer technology and 
can typically run C code. As it pertains to the workplace in which this project is being 
conducted, the word rPAC is sometimes used interchangeably with RTU. 

SCADA – A supervisory control and data acquisition system, is a network of computers 
and controllers similar to a DCS, but it provides a “supervisory” aspect where human 
operators can view operations remotely and make adjustments in real time. 

Serial communications – A method of electronic (digital) communication that sends 
discrete (Boolean) bits to be interpreted by a processor. 

Service – A program or software that runs in the background; a service will start 
running when a computer boots up, and it will run continuously unless it is told to stop 
running. 

Topics (MQTT) – A topic operates similarly to how an IP address operates. The 
difference is that an IP address is different for every device in a network; whereas, a 
topic resides in the cloud in an MQTT broker and any client (computer, or similar 
device) can subscribe or publish data to that topic. This is beneficial when it is preferred 
to have data sent to many different clients at one time. 



 
vi 

VPN – A virtual private network operates similarly to a private network, such as a LAN, 
but is called a “virtual” network because it extends privacy across networks such as the 
internet. 

Web-based GUI – A GUI that operates in a web-browser such as Google Chrome. To 
access a GUI that resides on another device within a network, a user can simply type 
the IP address and port number of the other device (likely a headless computer) into 
the browser search bar and then interact with it on the local non-headless machine. 

Well – A well, for the purposes of this document, is a hole that has been drilled in the 
ground to bring petroleum products to the surface. These include oil and natural gas. 

 

 

 

 

  



 
vii 

Abstract 

With the requirement of scheduling gas wells for gas lift operations in the oil and gas 
industry, the employment of autonomous well-scheduling is highly sought after. A Moxa 
UC-8100-ME-T Linux computer provides the necessary interface in which an 
autonomous schedule could be adapted. This device has the potential to interface with 
the control system being used by the oil and gas company overseeing a method of 
solution to the well-scheduling problem; the existing control system is comprised of a 
SCADA system connected to an rPAC controller that controls the choke valves on well-
heads.  

Several solutions were proposed to use the Moxa for well-scheduling purposes and 
research and testing was conducted to aid in the solution choice. Two communication 
protocols were tested for interfacing with the existing network: MQTT and Modbus TCP. 
The possibility of several programming methods to implement the schedule were also 
considered. The use of Moxa’s ThingsPro software and Python/C APIs, as well as, Node-
RED’s free and open source visual programming environment, were both considered for 
implementing the scheduling program and communication protocol. It was concluded 
that the most efficient method of solution requiring no additional costs or products, 
aside from the Moxa, was to use Node-RED and a free Modbus TCP node package. All 
aspects of the interfaces were tested successfully using the method chosen. The full 
implementation of the well-scheduling solution should take place, first by connecting 
the system to the corporate control network, and then completing the programming 
logic for the schedule. Node-RED can handle the communications and the programming 
and requires nothing else. It is recommended that the program make use of 
spreadsheet parsing nodes in Node-RED to enable the input of well-schedule data in the 
form of an Excel spreadsheet.



 
1 

1. Introduction 

North America has been a leader in the petroleum industry since the late 1800’s [1]. 
The information and subject matter contained in this report was procured while 
undergoing a project under the direction of one of North America’s oldest and largest 
producers of petroleum products [2]. Due to the correlation between pressure in 
petroleum reservoirs and a having a multitude of well-sites fracking into the same 
reservoir, the abovementioned company’s correlated wells cannot always remain 
operational at the same time. If a well is shut-off, this will allow pressure to rise within 
the reservoir for aiding gas lift operations on a separate correlated well; thus, the 
scheduling of wells and their on-off time is an important consideration. Not all well-
heads will yield the same volume of flow and consequently it is important to choose 
which well flows and which does not. When a well is off, production ceases. In order to 
maintain efficiency in production and maximize the ensuing margin of profit, the 
scheduling of well-heads must be enacted with precision and intelligent use of the 
relevant data required in the construction of a dynamic schedule.  

In the oil and gas industry, field devices are used to monitor and regulate various 
aspects of the process. The field device relevant to this instance of well-scheduling 
control is essentially an on-off valve. When the valve is in the on-position, resources 
flow; the converse is true when the valve is in the off-position. These valves are 
typically called choke valves. Field devices such as the aforementioned valve in the 
present-day oil and gas industry are typically controlled by a PLC, rPAC, RTU, or an 
analogous industrial controller. These controllers typically have the ability to perform 
logic, written to and residing in the controller, in the form of a computer program. They 
may also at other times, execute logic passed down through integration with a larger 
SCADA system or DCS. The logic written to a controller typically cannot be easily 
adjusted without shutting down the machine and re-uploading the program. Figure 1.1 
and 1.2, respectively, show a SCADA HMI and DCS.  

In regards to the case at hand, an rPAC is used to control the valve. The rPAC is 
integrated with a larger SCADA system and well-scheduling is performed remotely by 
input from a human operator. The schedule is contained in an Excel spreadsheet and 
must be input to the SCADA system separately for each individual well-head valve. The 
human operator resides in a remote control room and inputs the data from the 



 
2 

spreadsheet via an HMI to the SCADA system. The SCADA system then communicates 
by way of Modbus TCP with the rPAC on-site. The rPAC, in turn, sends a signal to the 
valve which causes the valve to open or close. The rPAC used for the purposes of this 
project and document can be seen in Figure 1.3. Note, that there may be many rPACs 
all individually controlling a single choke valve.                   

 

FIGURE 1.1: SCADA SYSTEM HMI [3] 

 

FIGURE 1.2: DISTRIBUTED CONTROL SYSTEM (DCS) [4] 



 
3 

 

FIGURE 1.3: SCADAPACK 334 RPAC [5] 

1.1 The Moxa  

It should be obvious that due to the time-consuming nature of inputting the multitude 
of values contained in the well-schedule and the level of current-day automation 
technologies, that an autonomous solution for well-scheduling is possible and would be 
greatly advantageous. The potential autonomous solution would reduce operation costs, 
increase efficiency, and maximize the margin of profit. For reasons beyond the scope of 
this document, a headless computer running a Linux operating system was chosen for 
integration into the pre-existing system to aid in providing a solution to the well-
scheduling problem. The headless computer chosen is a Moxa UC-8100-ME-T Series 
device and can be seen in Figure 1.4. This device is designed to run a software 
developed by Moxa called ThingsPro. ThingsPro is used for IIoT applications, edge 
computing, and data acquisition [7]; Figure 1.5 suggests the network architecture of 
the Moxa device with ThingsPro installed. ThingsPro provides a web-based GUI which 
can be accessed from a machine on the local network. It is important to note that the 
Moxa device, although headless, is a Linux computer and thus can perform just about 



 
4 

anything that a regular Linux desktop can in regards to programming. The main 
limitations in this regard would be what peripherals the Moxa device can support. The 
UC-8100-ME-T can support a cellular module and SIM card, and has two serial COMM 
ports, two LAN ports, a USB port, and an SD card slot.  

 

FIGURE 1.4: MOXA UC-8100-ME-T SERIES [6] 

 

FIGURE 1.5: THINGSPRO NETWORK [7] 



 
5 

1.2 Scope 

With the Moxa computer chosen as a precursor for implementing a solution, the 
problem has thus now evolved into the method of interfacing the Moxa edge computer 
with the existing corporate control network and implementing the well-schedule as a 
program running on the Moxa. The method of interfacing and implementation to 
manage the well-scheduling must provide the most efficient and maintainable system. 
It is the belief of those involved in the project that this particular issue of well-
scheduling has not been previously solved using the technology at hand and thus lacks 
historical solutions to aid in the integration and solution to any other associated issues. 
This problem is challenging due to the possible existence of many solutions. There are 
many factors that must be considered to aid in finding solutions to this problem; the 
factors are as follows: the communication protocol(s) to be used, the method of 
programming to implement the schedule, the ability of the Moxa to run certain 
software, whether or not it is integrable with the current system without the need to 
acquire other materials or equipment, and its ability to actually write data through the 
chosen communication protocol as opposed to just acquiring data for storage. 

Through research, a few viable solutions were brought to light. These solutions include: 
using ThingsPro’s Modbus framework and Python/C API for programming, using 
ThingsPro’s MQTT client and Python/C API for programming, using MQTT and Node-
RED for programming without the use of ThingsPro, and lastly, using Modbus TCP with 
Node-RED for programming without the use of ThingsPro. The following sections will 
analyze the aforementioned solutions. 

2. ThingsPro 

The ThingsPro software, once installed, runs as a service in the background to enable 
consistent access to the GUI to configure the Moxa computer. Out of the box, the Moxa 
must be configured through an SSH or serial COMM connection with the Linux terminal. 

2.1 ThingsPro and Modbus 

The Moxa UC-8100-ME-T, combined with the ThingsPro software, has the ability to poll 
data via Modbus TCP [8]. There are multiple ways to utilize this capability. Arguably the 
simplest method would be to use the ThingsPro GUI to create a Modbus template, 
device tag, and then add the device as described in [9]. Testing determined successful 



 
6 

readability of register values in the rPAC device being used when the “Test” function as 
seen in Figure 2.1 was pressed. Through the enabling of the Modbus slave function, as 
seen in Figure 2.2 in the ThingsPro GUI, a local SCADA system can poll this data from 
field devices connected to the Moxa computer [8]. This can be done using an IoT 
service such as Azure IoT or AWS IoT, or by a user developed program using the C or 
Python API; the guide [10], contains detailed tutorials on these processes. 

 

 

FIGURE 2.1: DEVICE READ TEST [9] 

 

FIGURE 2.2: MODBUS SLAVE FUNCTION [9] 

The RESTful API described in the Rapid Development section of [9] enables remote 
configuration of the Moxa computer through user developed programs. As seen in 
Figure 2.3, configuration details can be read or written by creating a token that is 
utilized in a user’s program. Through use of a VPN tunnel and ThingsPro’s OpenVPN 
client function, a user may connect to an OpenVPN server to establish secure 
communications from a remote SCADA system [11]. This essentially turns the Moxa 
computer into a network router. Thus, the combination of a VPN tunnel and the RESTful 
API allows for remote configuration, Modbus polling, and direct access to field devices 
through the routed connection. An example of this routing effect is shown in Figure 2.4. 

The aforementioned testing and research appears to show that IoT service applications 
and user developed programs can directly access field devices through the VPN tunnel, 
which in turn implies that a remote computer or SCADA system can read or write via 
direct access while the Moxa is acting as a router and firewall. It is also shown that 



 
7 

device tags and field equipment configuration, as well as the Moxa computers 
configuration, can be modified using the Python/C API, and RESTful API, respectively. 
With these abilities, and the development of a program by a user, the Moxa device will 
increase the efficiency of a SCADA system’s polling operations, enable the creation of 
more sophisticated data logging operations, and read Modbus data from a field device 
such as the rPAC being used in this project. As seen in [9], ThingsPro provides an easy 
method to upload user developed programs to the Moxa computer via the GUI. The 
RESTful API can facilitate a gateway for a remote computer to program the rPAC; it is 
not inherently obvious, however, that the RESTful API can allow changes or input to the 
user developed program that may have been uploaded to the Moxa. 

 

FIGURE 2.3: CREATING A TOKEN [10] 

 

FIGURE 2.4: VPN TUNNEL [11] 

2.2 ThingsPro and MQTT 

With the ability of ThingsPro’s Modbus polling, as spoken about in the previous 
subsection, we can set a polling interval as seen in Figure 2.5. ThingsPro will then 
continuously poll data from the connected device at this specified interval [12]. This 
data can then be uploaded to a corporate MQTT broker using ThingsPro’s Generic 
MQTT client; this is seen in Figure 2.6, and is easily accessible through the ThingsPro 
GUI. Tests confirmed that register values polled from the rPAC could successfully be 
uploaded to an MQTT broker. Using the programming software included with the rPAC 
model used, register values in the rPAC were forced to certain values and this was 
reflected in the MQTT broker. 



 
8 

 

FIGURE 2.5: POLLING INTERVAL [12] 

 

FIGURE 2.6: GENERIC MQTT CLIENT [9] 

With the included Python/C API and RESTful API, which enable configuration of the 
Modbus framework and the Moxa device as discussed in the previous section, 
configuring the Generic MQTT client in ThingsPro would also be possible. The latter is 
true because the RESTful API allows access to all configuration options in ThingsPro 
[10]. Some newer rPACs have support for MQTT, and thus could also subscribe to 
topics in the MQTT broker. This enables the possibility of an rPAC to subscribe and 
publish information to/from the MQTT broker, which would essentially eliminate the 
need for ThingsPro’s Generic MQTT client. The rPAC used in this project, however, does 
not support MQTT and thus to implement a solution in that manner would require all 
field rPACs to be upgraded. 

Successful testing of ThingsPro’s Generic MQTT client show that a SCADA system 
equipped to subscribe to MQTT topics could in turn retrieve polled Modbus data 
acquired by use of the Python/C API, or through configuration in the GUI, from the 
Moxa. It is important to note that the Generic MQTT client can only publish data that 
has been acquired through Modbus polling and is not capable of subscribing to data; 
therefore, the configuration of the additional Sparkplug MQTT specification, seen in 



 
9 

Figure 2.7 and Figure 2.8, appears to be needed. A lack of information on this 
specification caused abandonment of testing. 

 

FIGURE 2.7: SPARKPLUG MQTT SPECIFICATION [9] 

 

FIGURE 2.8: SPARKPLUG MQTT SPECIFICATION CONFIGURATION [9] 

3. Node-RED 

Node-RED provides the ability to program for IoT applications using a web-based 
editor/GUI [13]. This flow-based type of programming uses “a network of black-boxes” 



 
10 

[14]; the black boxes in Node-RED are called “nodes”. Since Node-RED is a successful 
open source software, developers in the community have created many nodes which 
each perform some type of function. These nodes can be wired together to create a 
“flow” in the editor and then deployed. See Figure 3.1 for an example flow. Nodes can 
do anything from providing a local MQTT broker running on the Moxa computer to 
performing read and write operations in a controller such as the rPAC with Modbus TCP. 
There is almost a limitless amount of nodes that can be downloaded via Node-RED’s 
Palette Manager (see Figure 3.2); there also exists the possibility for a user to develop 
their own nodes [17] or use existing function nodes (see Figure 3.3) where JavaScript 
code can be implemented. Another method of executing functions or programs in Node-
RED is the exec node shown in Figure 3.4. The exec node allows a user to run non-
JavaScript programs that exist on the computer running Node-RED, that may be 
required for implementation in a system. Thus, Node-RED has the ability for a user to 
create a node, have access to a massive database of pre-existing nodes, use the 
function node to write JavaScript function blocks to manipulate a flow, and execute 
outside programs with the exec node; this opens an infinite amount of potential when it 
comes to programming. It is also relevant to note the existence of debug nodes, as well 
as, scheduling type nodes. The debug nodes greatly aid in the debugging process of a 
program flow in Node-RED, while the scheduling nodes allow certain elements or nodes 
in the flow to be triggered at a specified interval, time, or date. 

3.1 Node-RED and MQTT 

Node-RED provides generic MQTT input and MQTT output nodes as shown in purple in 
Figures 3.5 and 3.6, respectively. The input node, when configured, will subscribe to a 
topic from an MQTT broker; conversely, after configuration, the output node will publish 
a topic to an MQTT broker. A simple search in the Palette Manager, will also reveal that 
an MQTT broker node exists and can thus be installed to the Palette for use in a user’s 
flow. Figure 3.7 shows the MQTT broker node and further information can be found on 
Node-RED’s website [21]. Simple deployment of a flow containing a configured (see 
Figure 3.8) broker node, will initiate an MQTT broker on the computer that the flow is 
running on, in this case, the Moxa computer. The broker node does not require any 
“hardwired” connections in the flow because it essentially runs the same as any MQTT 
broker; a client such as an rPAC or SCADA system with access to the network IP 
address and port that the broker is running on can simply subscribe or publish to topics 



 
11 

in the broker. The broker, MQTT input, and MQTT output nodes were tested and 
provided seamless connectivity within the LAN. Using ThingsPro’s Generic MQTT client, 
Modbus data was published to the broker running in Node-RED, proving that ThingsPro 
and Node-RED were compatible. It is expected that the same success would occur with 
devices outside of the LAN, such as a corporate SCADA network, as long as the 
connection is routed and port forwarded. 

 

FIGURE 3.1: EXAMPLE FLOW [15] 

 

FIGURE 3.2: NODE-RED PALETTE MANAGER [16] 



 
12 

 

FIGURE 3.3: FUNCTION NODE [18] 

 

FIGURE 3.4: EXEC NODE [19] 

 

FIGURE 3.5: MQTT INPUT NODE [20] 

 

FIGURE 3.6: MQTT OUTPUT NODE [20] 

 

FIGURE 3.7: MQTT BROKER NODE [21] 

 

FIGURE 3.8: CONFIGURING THE BROKER NODE [21] 



 
13 

3.2 Node-RED and Modbus 

In the same manner that the MQTT broker node was obtained by download from the 
Palette Manager, a Modbus TCP package can be downloaded. The package of nodes 
can be seen in Figure 3.9 and [22],[23] both contain information on the package. As 
with almost all nodes in Node-RED, some configuration is required; Figure 3.10 showed 
the configuration ability with the broker node.  

The most important nodes contained within the Modbus TCP node package, are as 
follows: Modbus-response, Modbus-flex-getter, Modbus-flex-write, and Modbus-server. 
Modbus-flex-getter and Modbus-flex-write are the nodes that, respectively, allow the 
computer running Node-RED to perform read and write operations to devices such as 
the rPAC controllers via Modbus TCP. The Modbus-server runs similarly to the MQTT 
broker spoken about in the previous section, and enables the computer running Node-
RED to act as a Modbus master or slave. The Modbus-server has a specified port and IP 
address for Modbus TCP communication, and has a specified amount of virtual coils and 
registers. The Modbus-response is essentially a debug node used specifically for the 
Modbus TCP nodes. 

 

FIGURE 3.9: MODBUS TCP NODE PACKAGE [22] 



 
14 

Due to the seamlessness of the Node-RED software and the multitude of free and open-
source nodes, the majority of tests performed for the project were conducted using 
Node-RED; specifically using Modbus TCP, as proper MQTT infrastructure is not present 
in the work site. Node-RED was installed on the Moxa computer and the web-based 
flow editor/GUI was accessed with a laptop residing in the LAN. Tests involved 
successful read and write operations with Modbus TCP to and from the rPAC involved, 
logical operations on data retrieved via Modbus TCP, as well as, read and write 
operations involving a simulated SCADA system.  

3.2.1 Read and Write Operations 

Using the Modbus TCP package, read and write operations for floating point values 
were successful to and from the rPAC device. Logic was successfully performed using a 
function node with JavaScript code on these floating point values; this enabled the 
program to convert them between readable floats and the unsigned 32-bit binary 
numbers used by the rPAC. This allows the user to input any floating point number in 
base 10 (including those with a negative sign) and have it be successfully written to the 
rPAC. Similarly, floating point values read from the rPAC were output in a readable base 
10 format. Read and write operations proved even simpler to and from coils, requiring 
little to no logic. 

3.2.2 Logical Operations  

Similarly to the logic performed in regards to floating point values, logic was performed 
to toggle bits in the rPAC. It was also shown that logic could be performed on data 
retrieved from one element in the system (such as the emulated SCADA system) to 
then be passed to the rPAC and vice versa. This confirms that with the inclusion of 
scheduling nodes, well-scheduling can easily be realized. Simple JavaScript function 
blocks were implemented within the function node, along with several other nodes that 
are pre-existing in the node palette to perform the logic.  

3.2.3 Emulated SCADA System 

A simulated connection to a local SCADA system was used to read and write values to 
and from the Modbus-server node running on the Moxa computer. This is possible using 
the virtual coils and registers within the Modbus-server along with Modbus-flex-write 
and Modbus-flex-getter nodes which sent and received data to and from the Modbus-



 
15 

server. In the same manner that logic was performed on the rPAC and within the Moxa 
computer’s instance of Node-RED, logic was again performed on data sent and received 
by the emulated SCADA system. 

3.2.4 The “Master flow” 

In the end, all of the testing operations were integrated as one. This formed a “master 
flow”. The master flow tested almost all of the would-be requirements for the well-
scheduling problem. The master flow successfully tested the following: integration 
between potentially numerous rPAC controllers on site; the ability to read and write to 
coils and registers in rPAC devices that would in turn control choke valves; the ability to 
perform logical operations, such as scheduling on the Moxa computer; using various  
nodes, the ability to send and receive data from a SCADA system using a master/slave 
relationship and the Modbus-server; and lastly, the ability to pass information between 
all three interfaces: SCADA, the Moxa computer, and the rPACs. 

4. Summary Analysis 

It is of note that Node-RED and ThingsPro were able to communicate with each other 
through MQTT publish and subscribe; for instance, ThingsPro successfully polled 
Modbus data from the rPAC and then published it to the broker running in Node-RED. 
With the ability of Node-RED to execute programs contained on the Moxa with the exec 
node, any possible combination of ThingsPro API’s and frameworks could be combined 
with the use of Node-RED. At the time of writing this document, the official well-
schedule has not been implemented, although, the ability to parse spreadsheet data is 
available through a multitude of nodes in the Palette Manager. This implies, just as 
logical operations were performed on data sent between the three interfaces, that the 
input of a spreadsheet to the Moxa computer (specifically Node-RED), would allow logic 
to be performed on the schedule contained within the spreadsheet; thus, it would be 
possible to simultaneously trigger operations on scores of well-sites. All test results are 
captured with video recording, code, and an instruction set available by way of [24], 
[25], [26]. 

5. Conclusions 

It is evident that Node-RED is able to provide a solution to the well-scheduling problem 
without the need for any additional subscriptions, software, or hardware. It is fully 



 
16 

integrable with the current system using only the resources at hand. Node-RED can get 
the job done independently, while enabling full control of all processes involved. If it 
can be programmed, Node-RED can do it; the ability to create your own nodes and run 
programs with the exec node, confirms that even the most obscure problems can be 
solved in the world of IIoT with Node-RED. In the event that the communication 
protocol between the SCADA system and the Moxa were to change from Modbus TCP to 
MQTT across the corporate network, a simple swap-out of the Modbus-server for a 
combination of MQTT nodes, would solve the problem; the well-scheduling logic would 
remain the same. Furthermore, in the less-likely scenario that all rPACs were replaced 
with newer models that support MQTT, the same simple swap out for MQTT input and 
output nodes for the Modbus-flex-write and Modbus-flex-getter, would solve the 
problem. Node-RED with its free and ample open-source resources is effective, future 
proof, and highly maintainable through its user friendly web-based flow editor. The 
style of programming also opens the door to a programming environment for less 
experienced developers; some programming knowledge may be required but can be 
obtained by studying the multitude of available resources. 

ThingsPro serves its purpose as a GUI to configure network connections, cell modems, 
user accounts, and other relevant configurations of the Moxa computer; however, after 
several days of research into ThingsPro’s capabilities for solving programming 
programs, it was discovered that the documentation appeared convoluted and difficult 
to comprehend. Many questions remained unanswered, as the user manual left out 
relevant details, while the datasheet claimed capabilities not seen in the manual. The 
largest reason for abandoning major testing of ThingsPro was that every time a possible 
solution path was found it led to another service or subscription. Although ThingsPro 
enables the uploading of a program to the Moxa computer through the GUI, accessing 
the program to input scheduling data is convoluted, requiring a possible VPN tunnel and 
both API’s. It appears redundant to use ThingsPro for any programming solutions; 
however, it may be notable that the ThingsPro API’s can be used to configure the Moxa, 
which includes network configuration options such as the internal cell modem or LAN 
ports, among other configuration options. As noted previously, the exec node in Node-
RED has the ability to run Python and C programs in the Linux environment and thus 
could make use of the ThingsPro API’s in this manner. 

 



 
17 

6. Recommendations 

It is of the opinion of those involved with the well-scheduling solution, that using Node-
RED and replacing the simulated SCADA system on the local network with the corporate 
remote SCADA system, is a logical next step. Existing cell modems on the corporate 
network can route the connection to the LAN in which the Moxa computer resides. In a 
case where no existing cell modem is present, the Moxa with its internal cell modem, 
combined with the ThingsPro GUI, can provide the necessary port forwarding. The 
latter would imply that the rPACs reside within the Moxa’s LAN; in the case that they 
are on a separate LAN, a combination of the Moxa’s cell modem, external cell modem, 
or router, could be used to forward the port to the rPACs LAN. 

With the Moxa officially connected to the corporate control network, the well-schedule 
must be implemented. Using a spreadsheet parsing node, studying the spreadsheet, 
and then designing the scheduling Node-RED flow, would provide the final integration. 
Lastly, determining in which manner spreadsheets will be input to the Moxa’s Node-RED 
instance, and implementing the programming to do so, will provide a means to easily 
update the schedule when new data becomes available. 

 

 

 

 

 

 

 

 

 



 
18 

7. References 

[1] https://www.ektinteractive.com/history-of-oil/ 

[2] https://www.ovintiv.com/history/ 

[3] https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.indiamart.com%2
Fproddetail%2Fscada-system-4226615233.html&psig=AOvVaw37lJSPaXfY8ayld-
eomiqg&ust=1587934516196000&source=images&cd=vfe&ved=0CA0QjhxqFwoT
CLiYhpi7hOkCFQAAAAAdAAAAABAD 
 

[4] https://en.wikipedia.org/wiki/Distributed_control_system#/media/File:Functional_l
evels_of_a_Distributed_Control_System.svg 
 

[5] https://www.rspsupply.com/image/popup?imagePath=%2fimages%2fproduct%2fl
arge%2fSCADAPack-TBUP334-1A21 
AB01S.jpg&altText=U0NBREFQYWNrIFRCVVAzMzQtMUEyMS1BQjAxUyAoMzM0IFNl
cmllcykgd2l0aCBGcmVld2F2ZSBSYWRpbw2 
 

[6] https://www.moxa.com/en/products/industrial-computing/arm-based-
computers/uc-8100-me-t-series#resources 
 

[7] https://www.moxa.com/en/products/industrial-computing/system-
software/thingspro-2 
 

[8] https://www.moxa.com/getmedia/41500ce4-64e0-4c69-9e0c-
34d09772e133/moxa-thingspro-2-datasheet-v2.1.pdf  
 

[9] https://www.moxa.com/getmedia/147d06a8-86ce-4394-b374-
b2ec09333ad9/moxa-thingspro-2-manual-v10.0.pdf  
 

[10] https://thingspro-programming-guide.netlify.app/application-note/develop-
program-with-cg-api/  
 

[11] https://thingspro-programming-guide.netlify.app/application-note/managing-field-
device-vpn/ 
 

[12] https://www.moxa.com/getmedia/4da6fb8f-5288-4c00-bd4d-
70654e945d36/moxa-using-moxa-thingspro-and-mqtt-tech-note-v1.0.pdf  
 

[13] https://nodered.org/ 

[14] https://nodered.org/about/ 



 
19 

[15] https://flows.nodered.org/flow/4b940430b92142571c670050f4d98f6d 

[16] https://nodered.org/docs/user-guide/editor/palette/manager  

[17] https://nodered.org/docs/creating-nodes/ 

[18] http://www.steves-internet-guide.com/node-red-functions/  

[19] https://nodered.org/docs/creating-nodes/appearance  

[20] https://cookbook.nodered.org/mqtt/connect-to-broker 

[21] https://flows.nodered.org/node/node-red-contrib-mqtt-broker  

[22] https://flows.nodered.org/node/node-red-contrib-modbus 

[23] https://github.com/BiancoRoyal/node-red-contrib-modbus/wiki 

[24] https://www.youtube.com/playlist?list=PLqM5bz4H7e4t_iOdId9cCQrjlTRlbSI1C  

[25] https://gist.github.com/Nolan-Walker/440ff7c7ac28199258e6af05c6025d9c 

[26] https://gist.github.com/Nolan-Walker/b409695219ed31774d95458be9e5df99 


